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Abstract

This study evaluates and compares the effectiveness
of multiple large vision-language models (LVLMs) for
automated visual framing analysis in the context of news
imagery about social movements. Specifically, we
evaluate LVLMs (Gemma3-27B, GPT-4.1, InternVL3-
14B, InternVL3-38B, and Qwen2.5-VL-72B) against
human-annotated ground truth data, using both
baseline prompts and a range of Chain-of-Thought
(CoT) prompting strategies with increasing complexity
(ie., from simple to detailed to expert). Model
performance is assessed across visual framing
categories: conflict, peace, and solidarity, using
standard evaluation metrics including Fl-score and
Cohen’s kappa. Our findings show that (1) CoT
prompting improves model alignment with human
annotations across most framing categories, especially
for complex social cues like solidarity; (2) expert-level
CoT prompts show the highest agreement with human
coders; and (3) model performance varies by the
specific model in focus, with InternVL3-38B
consistently outperforming others. This study provides a
scalable and theory-driven framework for applying
LVLMs to visual content analysis in social science
research.

Keywords: large vision-language models, prompt
engineering, Chain-of-Thought, visual framing, news
imagery

1. Introduction

Historically, message framing has been one of the
most prolific areas of communication research (Chung
et al.,, 2013). At the core of message framing is an
approach to study the meaning embedded in
communication messages. Framing research is based on
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four fundamental assumptions: (a) For any given subject
matter, there are virtually infinite ways to construct
messages; (b) In the process of creating a message, the
author makes choices about the building blocks that are
used to construct the message as well as about the
ultimate form that the message takes; (c) These message
construction decisions convey preferred meanings that
shape a message receivers’ understanding of the events
and issues at hand; and (d) The impact of that message
is not uniform, but is moderated by a variety of factors
including the receiver’s predispositions. These
assumptions have guided framing and framing effects
researchers from a variety of different social science
disciplines, including communication, psychology,
sociology, among many others (Entman, 1993).

While considerable attention has been paid to
developing the theoretical underpinning and
methodological approaches to textual message framing
(McLeod et al., 2022), less attention has been devoted
to assessing the meaning embedded within visual
messages. In the spirit of the adage, “A picture is worth
a thousand words,” it is imperative to develop
theoretical and methodological approaches to visual
framing as the images (such as news photographs) that
accompany textual messages can accentuate or alter the
impact of the textual messages (such as news stories).
Moreover, readers may attend to visual images without
even reading the accompanying textual message, further
underscoring the importance of visual frames. The
visuals that accompany a news story may set the tone
for how the message is perceived. They may also
provide substantiating evidence to support assertions
made in the text. For instance, a photograph showing a
clash between protesters and police may substantiate a
news story’s assertion that a protest was violent. In
essence, visuals can serve as “framing devices,” helping
audiences make sense of, interpret, and form attitudes
toward complex events and issues, such as social
movements (Geise & Baden, 2015).
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Along this line, the fact that images circulate
rapidly and proliferate on platforms, like news websites
and social media, emphasizes the need to develop
scalable visual framing analysis methods that contribute
to advancing both theory and computational
methodology in mass communication research.
However, analyzing visual frames faces challenges.
Compared to texts, images are more ambiguous and
more dependent upon the specific context for
interpretation. Textual content consists of words,
sentences, paragraphs, with relatively stable meanings
that can be more systematically coded. In contrast,
images contain visual information at different levels,
from objects, people, colors, to spatial relationships that
may be difficult to classify if only focusing on a single
level/dimension without considering others. Thus,
interpreting visual frames involves, not only
recognizing objects or scenes, but also social
relationships, shared symbols, and embedded meanings.
This complexity inevitably requires interpretive and
analysis tools that extend beyond object detection or
scene classification to infer symbolic meaning.

While natural language models (NLMs) have
largely revolutionized the analysis of textual frames
through in-context learning (i.e., learning based on
examples) and fine-tuning (i.e., adjusting the prompts
for improved accuracy), visual frame analysis lacks a
clear path forward. Large vision-language models
(LVLMs) represent a promising opportunity to advance
visual frame analysis through their capacity to bridge
image understanding with semantic inference.
However, the application of LVLMs in social science
research is still in its initial stage as integrating large-
scale image datasets into communication analysis

requires robust theoretical frameworks, scalable
annotation methods, and reliable performance
benchmarks.

To advance the methodological toolkit for visual
framing analysis, this study proposes a systematic and
comprehensive framework to evaluate the performance
of LVLMs and prompt engineering strategies.
Specifically, we assess how effectively these models
can identify different visual frames and their underlying
components, such as actors, actions, objects, and
relational dynamics. Using a human-coded benchmark
dataset as ground truth, we evaluate the degree of
alignment between model-generated outputs and human
interpretation. Our empirical findings provide insights
on the extent to which current LVLMs can be applied to
automated visual content analysis and illuminate best
practices for integrating these tools into future research
on visual framing in mass communication.

2. Research Background

2.1. Visual framing analysis of social
movements

In the context of social movements, media framing
plays a critical role as it has been demonstrated to
influence people’s perceptions about the legitimacy of
the movements (Boyle & McLeod, 2018; McLeod &
Hertog, 1992), attitudes toward the underlying political
and social issues, and audience engagement (Casas &
Williams, 2019; Lu & Peng, 2024). Past literature
showed that news articles tend to support of the status
quo, delegitimizing protests and marginalizing
protesters (Boyle & McLeod, 2018; McLeod & Hertog,
1992): news coverage of social protests were more
likely to feature conflicts between protesters and police,
and as a result, the emphasis on conflicts might trigger
negative perceptions about the protesters and
disapproval of their issue positions among the news
audience.

What is often overlooked in the analysis of news
coverage is that social movements may also strengthen
solidarity within social groups through shared identity
and goals (Coser, 1956; Sangiovanni & Viehoff, 2023).
Moreover, tensions between groups may also reinforce
solidarity within each group (Coser, 1956). Also, while
conflicts are often highlighted, most of the social
movements are  peaceful (Mansoor, 2020).
Consequently, highlighting solidarity and peace in
social movements may better advance the causes
advocated by the movements. Taken together, despite
that past literature is highly conflict focused, visual
framing of social movements from news media may
either depict: (a) conflicts between protesters and police,
(b) solidarity among protesters, (c) solidarity among
police, or (d) highlighting peace (Lu et al., 2025).
Analytical strategies for large-scale pattern detection are
needed for investigating the news images of social
movements (Joo & Steinert-Threlkeld, 2022; Neumayer
& Rossi, 2018).

Compared to text, visuals of social movements
might be more likely to be recalled due to their capacity
to trigger affective responses and encode vivid mental
representations, which enhances the sense of proximity
to events/issues (Fahmy & Johnson, 2007). Scholars
have more recently dedicated their attention to the
analysis of visual elements (Rodriguez & Dimitrova,
2011) due to the growing dominance of audiovisual
centered communication in the digital era. Geise (2017)
defines visual framing as “the process of selecting some
aspects of a perceived reality, highlighting them above
others by means of visual communication ... so that
certain attributions, interpretations, or evaluations of the
issue or item described are visually promoted” (p. ).
Scholars regard visual framing as an ongoing process,
which includes the production and selection of visuals,



visual design and news values (e.g., Kress & Van
Leeuwen, 2020), the presentation of news images (e.g.,
Fahmy, 2010; Grabe & Bucy, 2009), and audience
reception: how viewers receive, interpret, and are
impacted by the visuals (e.g., Iyer et al., 2014).
Advancements in analytical strategies can facilitate
comprehensive visual framing analysis, enabling
scalable discovery of visual patterns across large
datasets (Joo & Steinert-Threlkeld, 2022) while
preserving contextual nuance and symbolic depth. To
systematically examine visuals, Rodriguez and
Dimitrova’s (2011) four-tiered visual framing model
(denotative, semiotic, connotative, and ideological)
provides a foundational framework that allows for a
layered approach to the decoding of visual meaning
across multiple levels. The denotative level focuses on
identifying the basic representational content depicted,
including the setting, objects as well as the actors; the
semiotic level explores how an image is composed,
including the camera angles as well as the actors’ body
posture, facial expressions (Forgas & East, 2008); the
connotative level reveals the metaphorical message of a
visual and the overarching meaning it reflects; the
ideological level reflects the communicator’s beliefs
and motives behind the visual, including their
sociopolitical and religious worldviews (Feng, 2013).
Through capturing denotative and semiotic elements,
the analysis can then be used to infer the connotative and
ideological levels of visual framing. This model has
been widely used to analyze visual content in diverse
contexts, including social movements (Fahmy, 2010).

2.2. Computer vision techniques for image
analysis

Computer vision (CV) techniques provide the
foundational tools necessary for analyzing visual
content. Image preprocessing techniques such as
scanning, sampling, and quantization prepare raw image
data for feasible analysis by standardizing pixel
structures and reducing noise (Sharma et al., 2010).
Feature extraction methods like edge detection, texture
analysis, color histogram, are then used to identify
distinctive patterns, shapes, and stylistic features that
can signal visual salience (Lowe, 2004; Dalal & Triggs,
2005). Object detection and segmentation algorithms,
including modern deep learning architectures enable the
precise localization and categorization of key entities
within images (Redmon et al., 2016; Ren et al., 2015).

Building on these foundations, deep learning
architectures, particularly  convolutional neural
networks (CNNs), have become the backbone of
semantic image understanding, enabling more robust
and scalable object and scene classification (Joo &
Steinert-Threlkeld, 2018). One widely used application

of CNNss is facial expression and emotion recognition.
For example, Joo et al. (2019) developed a multi-task
CNN model to automatically detect facial displays of
anger, threat, and happiness, as well as other visual cues
like defiance and affiliative gestures in presidential
debates.

2.3. Computational visual framing analysis with
vision language models

Large vision-language models (LVLMs) have opened
new avenues for scholars to explore the symbolic and
ideological dimensions of images through prompting:
querying visual content using natural language (Nayak
et al., 2024). This is possible because LVLMs are pre-
trained on billions of image-text pairs, which enables
them to associate visual elements (e.g., raised fists in
social movement images), not only with their literal
form, but also with contextual meanings like solidarity,
as these often co-occur in captions or surrounding text
(Zhang et al., 2024). Many modern LVLMs integrate
transformer-based visual encoders (Radford et al., 2021)
with large language models to enable multimodal
reasoning (Zhou et al., 2024).

Although recent advancements in various LVLMs
enable scholars to examine higher-order visual frames
(such as connotative and ideological frames) through
prompting, it is crucial to compare different LVLMs to
determine whether these models can accomplish the
visual understanding tasks that human researchers
perform. This is especially important because different
LVLMs have different underlying mechanisms for
processing image-text pairs; while CLIP uses a dual-
encoder architecture trained with contrastive learning to
align image and text embeddings in a shared space,
GPT-4.1 integrates visual inputs directly into a unified
transformer-based language model, allowing for more
contextualized and generative reasoning (Achiam et al.,
2023; Radford et al., 2021).

Pre-trained LVLMs can also differ significantly
based on their data sources, regional development
contexts, and design goals. For instance, Qwen2.5-VL-
72B is primarily trained on data curated in Chinese
contexts, potentially reflecting the cultural norms
specific to its region of origin (Bai et al., 2025).
Similarly, Google’s Gemma3-27B, though multilingual
and multimodal, reflects training priorities aligned with
Western-centric datasets. These underlying differences
can lead to cultural biases in how models interpret
symbolic imagery (Ananthram et al., 2025). For
instance, while one model might interpret a raised fist as
a sign of solidarity, another might associate it primarily
with aggression, depending on its training corpus. As
such, comparing how different LVLMs interpret the
same visual input is essential for understanding their



symbolic framing capacities and potential sociopolitical
blind spots.

Another important feature of LVLMs that warrants
careful examination is their tendency to adapt visual
classification outputs in response to changes in
researchers’ prompting strategies. While existing
research has explored how wvarious prompting
techniques such as zero-shot prompting (i.e., providing
instructions without examples) and chain-of-thought
prompting (i.e., guiding the model through logical
reasoning steps) enhance the performance of large
language models (Kojima et al., 2023), there remains a
notable lack of studies examining how these strategies
influence LVLM outputs. Thus, it is essential to identify
which prompting strategies yield the most reliable and
interpretable results from LVLMs.

Finally, manual coding serves as a validation in the
process of automated visual analysis (Araujo et al.,
2020). Peng and Lu (2023) emphasize the importance of
incorporating human validation into automated visual
analysis, especially when readily accessible computer
vision tools are used for their convenience, sometimes
at the expense of accuracy. For instance, detecting
emotions in facial expressions still requires human
validation. Building on this, the current study uses
LVLMs to identify visual frames of social movements
and compares these classifications to human-coded
annotations to assess the extent to which model-
generated frame classifications align with those coded
by human annotators.

Taken together, this paper aims to (a) assess the
capabilities of various LVLMs for scalable visual
framing research, (b) compare prompting approaches to
identify the most effective techniques for maximizing
model performance, and (c) evaluate LVLMs to
recommend the most suitable model for interpreting
connotative and ideological frames in social movement
imagery. We propose the following research questions.

RQ1: How can state-of-the-art LVLMs be used
as effective tools for visual framing research?
RQ2: How do specific prompt designs (e.g.,
baseline Non-CoT, simple CoT, detailed CoT,
expert CoT) work in analyzing visual frames?
RQ3: How closely do model-detected frames
align with ground truth from manual coding, and
if the alignment differs between frame types?

3. Methodology
3.1. Data collection & preprocessing
This study collected a corpus of news articles and

associated images related to four large-scale social
movements in recent years: the Black Lives Matter

(BLM) movement, far-right mobilizations, anti-war
movements, and the Antifa (anti-fascist) movement.
Articles were retrieved via the LexisNexis News API,
which provides access to digital and print news content
across major U.S. news organizations. Thirteen news
outlets were selected to reflect a range of political
orientations, including Daily Kos, MSNBC, Rolling
Stone, CNN, The New York Times, Politico, The Hill,
CBS News, ABC News, The Wall Street Journal, Fox
News, The Washington Times, and The Daily Caller.
These outlets span the ideological spectrum from
progressive to conservative, ensuring variation in both
visual and textual framing approaches. The LexisNexis
API was used to retrieve articles containing keywords
related to social movements published between
01/01/2018 and 03/01/2025 with filters applied to
remove duplicate entries, inaccessible articles, and
irrelevant articles (V= 48,135 after filtering). Following
the article collection, GNews API and Scrapingdog API
were utilized for image retrieval. This scraping process
yielded a corpus of 8,979 high-resolution images, each
linked to the corresponding article metadata (e.g.,
source, headline, publication date, and news content).

3.2. Human annotation

To establish ground truth benchmarks for model
validation, a two-stage human annotation procedure was
implemented to evaluate (a) news relevance and (b)
visual content for framing analysis. Two human-
annotated datasets were subsequently used for model
comparison: the first for assessing headline-image
relevance against the LLaMA-3-8B model, and the
second for evaluating visual framing predictions from a
set of LVLMs: Gemma3-27B, GPT-4.1, InternVL3-
14B, InternVL3-38B, and Qwen2.5-VL-72B.

In the first stage, three trained annotators
independently coded a random subsample of 200 images
to assess whether the associated headline and article
content were relevant to social movements. Relevance
was coded dichotomously as “1” (relevant) or “0”
(irrelevant), yielding high inter-coder agreement
(Krippendorff’s a = .91).

In the second stage, the annotators conducted a
detailed visual content analysis on a separate set of 200
randomly selected social movement images. This round
focused on identifying four key semantic framing
categories: conflict, peace, protester solidarity, and
police solidarity, using a structured codebook informed
by past literature (Boyle & McLeod, 2018; McLeod &
Hertog, 1992; Lu et al., 2025). Human coding of the four
frames served as the gold standard evaluating the
performance of LVLMs, achieving a mean
Krippendorff’s alpha of .86.



To ensure clarity and replicability, annotators
received extensive training using a shared codebook that
included operational definitions, decision rules, and
multiple annotated examples for each frame category.
Pilot rounds were conducted prior to formal coding to
calibrate interpretations, and disagreements were
resolved through discussion until consensus was
reached.

We further identified 79 specific visual elements
that mapped onto the four key frames according to a
theoretical framework encompassing actors, actions,
objects, environment, and relationships. In addition to
the presence or absence of these elements, we also
coded the degree of conflict and solidarity in the visuals
to capture variation in intensity. This framework builds
on Rodriguez and Dimitrova’s (2011) four-tiered model
of visual framing extended through the social semiotic
framework (Jewitt & Oyama, 2004; Kress & van
Leeuwen, 2020) and computational scene understanding
models (Krishna et al., 2017). The comprehensive
codebook, annotated examples, and full prompt designs
are available via Appendix
(https://osf.io/vnuep/?view_only=191ee836cf974bSeba
fO6clic261d6le).

3.3. LVLMs annotation

To evaluate the performance of different LVLMs
in classifying the four framing categories, the
standardized multimodal prompt first requires LVLMs
to classify the unique visual elements, mostly at the
denotative and semiotic levels, to infer connotative and
ideological levels of visual framing. Then, the prompt
provides definitions of four semantic framing categories
(conflict, peace, protester solidarity, and police
solidarity) and asks how, based on the LVLM’s
classification of the 79 visual elements and the provided
definitions, the model would determine the appropriate
frame(s). Specifically, the prompt instructs each model
to analyze an image and return a JSON-formatted output
indicating whether each framing category is present or
not (true/false), along with the supporting visual
elements. For instance, the prompt asks whether the
image depicts “conflict” based on indicators such as
aggressive gestures, riot gear, or confrontations between
protesters and police.

This schema not only aligns with principles from
multimodal discourse and social semiotics where
images are read as texts with layered meaning systems
but also echoes object-relation models in computer
vision, particularly scene graph approaches that
represent images as structured triplets of subjects,
predicates, and objects (Krishna et al., 2017). By
bridging humanistic and computational traditions, the
framework enables both qualitative human annotation

and automated large-scale analysis of visual frames,
offering a theoretically grounded and operationally
robust tool for multimodal framing research.

Table 1. Conceptual Visual Analysis Framework

Visual Social Semiotic Example
Category Function
[Actor Representational Protester, police officer,
participants (e.g., roles or [bystander, etc
identities)
Action Process types (e.g., [Marching, shouting,

material, verbal, mental) |kneeling, etc

Object Circumstantial elements;
symbolic cues

Signs, shields, flags,
weapons, etc

[Environment |Locational and Indoor, outdoor, etc

compositional meaning

[Relationship |Interactive meaning (e.g., [Protester-police standoff,
gaze, proximity, power group cohesion, etc
dynamics)

3.4. Benchmark experiment

To evaluate the performance of leading LVLMs on
visual framing detection tasks, we conducted a
benchmark experiment using their outputs generated
from a standardized multimodal prompt. The selected
models for comparison were Gemma3-27B, GPT-4.1,
InternVL3-14B, InternVL3-38B, and Qwen2.5-VL-
72B. Model selection was guided by practical
accessibility,  implementation  feasibility,  and
performance rankings on OpenCompass benchmarks
(OpenCompass, 2024). InternVL3-38B, for instance,
ranked second among open-source models and third
overall in combined rankings during the study period.
These models represent a diverse cross-section of
contemporary LVLMs varying in architecture,
parameter size, and visual reasoning capabilities.

To quantify model performance, we compared
each model’s classifications of the four semantic
framing categories to a gold-standard dataset of images
manually annotated by expert human coders trained in
visual communication research. Evaluation was
performed using four widely adopted classification
metrics: precision, recall, F1-score (Zhang et al., 2019),
and Cohen’s kappa (k; Ananda et al., 2021; Cohen,
1960). InternVL3-38B  achieved the highest
performance on the conflict frame (F1=.92, «=.87),
followed by GPT-4.1 (F1=.88, x=.81). For the peace
frame, InternVL3-38B also led with strong performance
(F1=.84, x=.70), with Qwen2.5-VL-72B (F1=.83,
k=.67) and GPT-4.1 (F1=.79, 1=.64) performing
competitively. For the police solidarity frame,
Qwen2.5-VL-72B (F1= .88, k=.84) performed the best,
while protester solidarity framing was most accurately
identified by InternVL3-38B (F1=.87, «=.78). Overall,
performance varied across models and frames, but
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InternVL3-38B  consistently demonstrated strong
performance across multiple framing types (see
Appendix).

3.5. Chain-of-Thought prompting for visual
framing

This study employed a structured prompt
engineering approach to enhance the performance of
LVLMs in detecting visual frames. After establishing a
baseline using the standardized multimodal prompt for
classification (see section 3.3), we explored whether
prompting models to reason step-by-step, known as
Chain-of-Thought (CoT) prompting, would improve
their capacity to interpret social movement images
across four framing categories.

Building on prior work demonstrating the utility of
CoT in natural language tasks (Wei et al., 2022; Wang
et al., 2022), we developed three progressively
elaborated CoT prompts. Each version was designed to
support model reasoning through multiple interpretive
stages based on framing theory and visual semiotics.
The aim was to reduce ambiguity, encourage contextual
reasoning, and yield more reliable predictions aligned
with human-coded ground truth.

In simple CoT condition, models were prompted
to make basic observations, highlight salient features,
and draw a conclusion. The detailed version extended
this with guided prompts about emotional indicators,
symbolic  elements, and spatial relationships,
components theorized to underlie moderate to strong
framing effects (Kress & van Leeuwen, 2020). The
expert-level CoT prompt mimicked a professional
analyst’s workflow by asking the model to assess spatial
hierarchies, power  dynamics, = communicative
symbolism, and group cohesion before assigning
confidence ratings to its final output.

Prompt

#5tep 1: Initial Observation

Examine this protest image systematically:
[describe what you observe]

[list specific items you notice]

#Step 2: Frame Analysis

- CONFLICT indicators: [ ]

- PEACE indicators: [ ]

-PROTESTER SOLIDARITY evidence: [ ]
- POLICE SOLIDARITY evidence: [ ]
#Step 3: Final Classification

Version I: Simple

#5tep 1: Visual Survey

Examine the protest image systematically:

- Crowd: [describe size, movement. cohesion]

- Key visuals: [objects, clothing, signs, etc.]

- Spatial relations: [proximity. formations, positioning]
#5tep 2: Behavioral Analysis

- Emotional cues: [facial expressions. body language]
- Group interaction: [cooperation. confrontation]

- Evidence of tension or unity: [examples]

#Step 3: Symbolic Interpretation

- Signs/text: [quotes or slogans and meaming]

- Symbols: [flags, hand gestures, clothing]

- Setting context: [location. backdrop significance]
#5tep 4: Frame Analysis

- CONFLICT indicators: [ ]

- PEACE indicators: [ ]

- PROTESTER SOLIDARITY evidence: [ ]

- POLICE SOLIDARITY evidence: [ ]

#5tep 5: Confidence Ratings (0-10)

- Conflict: [score + reason]

- Peace: [score + reason]

- Protester solidarity: [score + reason]

- Police solidarity: [score + reason]

#5tep 6: Final Classification

Version 2: Detailed

Figure 1. Example of CoT prompting (Simple & Detailed)

Each CoT variant was delivered as a single API
request, embedding background knowledge, stepwise
instructions, and structured output expectations. Below
is an excerpt of the expert-level prompt used in this
study:

#15tep 1: Professional Visual Assessment

Analyze protest image like a domain expert:

*Crowd dynamics: [movement patterns, clustering]
*Spatial power structures: [barricades, division lines]
=Visual hierarchy: [what draws attention first]

#Step 2: Sociological Context

*Power dynamics: [dominance, resistance]

*Group cohesion: [shared action, mutual protection]
*Police-public interactions: [hostile, neutral,
collaborative]

*Emotional climate: [overall tone—fear, resolve, calm]
fiStep 3: Symbolic & Semiotic Analysis

*Messaging strategy: [intent of banners/slogans]
*Ssymbolism: [interpretation of colors, gestures, flags]
*Performative acts: [rituals, chants, kneeling]
*Competing narratives: [visual contradiction or
counter-messaging]

#Step 4: Frame Analysis

- CONFLICT:

- PEACE:

- PROTESTER SOLIDARITY:

- POLICE SOLIDARITY:

#Step 5: Confidence Evaluation (0—10)

=Conflict: [score + reason]

=Peace: [score + reason]

*Protester solidarity: [score + reason]

*Police solidarity: [score + reason]

#Step 6: Final Classification

Version 3: Expert

Figure 2. Example of CoT prompting (Expert)

All open-source models were deployed on a
dedicated server equipped with two NVIDIA RTX 6000
Ada Generation GPUs (48 GB each), supporting
efficient batched inference and multimodal input



processing at scale. Bootstrap resampling (a robust
method widely endorsed for uncertainty estimation with
limited sample sizes) was employed to ensure statistical
rigor (Austin & Tu, 2004; Carpenter & Bithell, 2000).
Predictions from three independent runs for each model-
prompt combination were consolidated using majority
voting, yielding a single representative prediction set
per condition (Kuncheva, 2004). This aggregation
approach accounts for run-to-run variability and has
demonstrated improved estimator stability in binary
classification tasks (Zhou et al., 2002). Bootstrap
resampling with 2,000 iterations was subsequently
applied to these consolidated prediction sets to derive
empirical confidence intervals for F1-score.

Results demonstrated that CoT prompting
improved model performance compared to the baseline
condition. For the conflict frame, nearly all models
benefited from CoT prompting. InternVL3-38B
demonstrated the highest performance overall with F1
0f0.93[0.89, 0.97]. Qwen2.5-VL-72B and GPT 4.1 also
achieved consistent high F1 of 0.89 [0.83, 0.94] across
CoT variants. The peace frame was the most stable
across conditions, with relatively less sensitivity to
prompt variation. Qwen2.5-VL-72B achieved the
highest F1=0.85 [0.79, 0.90] with CoT prompting. For
the protester solidarity frame, all models experienced
modest gains. GPT-4.1 showed the most substantial
improvement, increasing from a baseline F1=0.63 [0.53,
0.72]t0 0.91 [0.86, 0.95] under the simple CoT prompt,
with performance stabilizing around 0.88 in other CoT
prompting conditions. InternVL3-14B with the highest
F1=0.89 [0.83, 0.93] under Expert CoT prompting
showed improvement, while InternVL3-38B found no
performance increase. Police solidarity framing
exhibited the most pronounced performance
improvements under CoT prompting. InternVL3-14B
advanced from baseline F1=0.48 [0.33, 0.63] to F1=0.92
[0.86, 0.97] under expert prompting, while InternVL3-
38B improved from F1=0.55 [0.39, 0.68] to F1=0.93
[0.86, 0.97] under detailed CoT prompting. GPT-4.1
showed substantial enhancement from F1= 0.28 [0.12,
0.44] at baseline to F1=0.65 [0.52, 0.78] in the simple
CoT condition. Qwen2.5-VL-72B maintained high
performance across all conditions (from F1=0.83 [0.74,
0.91] to F1=0.90 [0.82, 0.96]).

Overall, InternVL3-38B was selected for
subsequent analysis (see Section 3.7) due to its
consistently high performance across all framing types,
with  confidence intervals indicating reliable
measurement precision across experimental conditions.

Table 2. Bootstrap F1 Scores with 95% ClIs for News
Framing Classification by Model and Prompt

© NomCoT Gt

Framing Model Baseline Simple Detailed Expert
Gemma3-27B 0.79[0.71,0.86] 0.85[0.78.091] 0.84[0.78.0.90] 0.82[0.75. 0.88]
GPT4.1 0.89[0.83.0.94] 0.86[0.80,092] 0.88[0.82.0.94] 0.89[0.83.0.94]

Conflict  InternVL3-14B 0.66[0.55,0.76] 0.82[0.74.0.89] 0.83[0.75,0.89] 0.81[0.73,0.88]
InternVL3-38B 0.91 [0.85,0.95] 0.92[0.87,0.96] 0.93 [0.88,0.97] 0.93 [0.89, 0.97]
Qwen2.5-VL-72B  0.83[0.75,0.90] 0.88[0.81,093] 0.89[0.83,0.94] 0.89[0.83,0.94]
Gemma3-27B 0.71[0.62.0.78] 0.81[0.74.0.86] 0.80[0.74.0.86] 0.84[0.77.0.89]
GPT4.1 0.75[0.68,0.82] 0.83[0.76.0.88] 0.80[0.73.0.86] 0.81[0.74. 0.86]

Peace InternVL3-14B 0.78[0.70.0.84] 0.81[0.74.0.87] 0.81[0.74.0.87] 0.80[0.73.0.86]

InternVL3-38B 0.83 [0.
Qwen25-VL-72B  0.82
Gemma3-27B 0.80 [0

,0.88]  0.82[0.76,0.88] 0.80[0.73.0.86] 0.82[0.76,0.88]
0.88]  0.85[0.79,0.90] 0.84 [0.78,0.89]  0.85 [0.79, 0.90]

L086] 0.80[0.73,086] 0.79[0.72.0.85] 0.82[0.76.0.88]
protester GFT41 0.63[0.53,0.72]  0.91[0.86,0.95] 0.8 [0.83,0.93] 0.88[0.83,0.93]
coldaity InernVL3-14B  084[0.77.090] 0.89[0.83.0.94] 0.87[081.092] 0.89[0.83,0.93]

© InternVL3-38B  0.87[0.82,0.92] 084[0.78,0.89] 0.84[0.78,0.90] 0.84[0.78.0.90]
Qwen25-VL-72B 0.83[0.78,0.89] 0.86[0.80,0.91] 0.86[0.80,0.91] 0.83[0.77,0.88]
Gemma3-27B 0.80[0.71.0.87] 0.82[0.74.0.89] 0.80[0.72.0.88] 0.79[0.70. 0.87]

police  GPTH41 0.280.12,044]  0.65[0.52.0.78] 0.47[0.31,0.62] 0.64[0.49, 0.76]
colidaricy  IMternVL3-14B  0.48[0.33.063]  0.86[0.77,093] 0.85[0.76,0.92]  0.92[0.86,0.97]
° InternVL3-38B  0.55[0.39.0.68] 0.8 [0.80,0.95] 0.93[0.86,0.97] 089 [0.82,0.95]
Qwen2.5-VL-72B  0.90 [0.82,0.96] 0.83[0.74.091] 0.90[0.82.0.96] 0.90[0.83.0.96]

3.6. Reliability validation

To assess the robustness of model outputs beyond
standard classification metrics, we evaluated LVLMSs’
reliability using Krippendorff’s alpha (a) (Lee et al.,
2024). For each of the five models (Gemma3-27B,
GPT-4.1, InternVL3-14B, InternVL3-38B, Qwen2.5-
VL-72B) and each of the four prompt conditions
(Baseline, Simple, Detailed, Expert), we conducted
three independent inference runs using identical inputs
but separate randomized seeds. All five LVLMs across
prompts demonstrated high reliability, with median
o > .80 (Landis & Koch, 1977). All a values were
above .60, the minimum acceptable reliability threshold,
underscoring the stability of frame predictions across
prompt designs (see Figure 3).

Reliability of VLLMSs for Protest Image Framing Detection
Across Prompt Complexity Levels

B InternVL3-388
. Qwen2.5

Reliability Coefficient

Krippendorf's a| n=200

Baseline Simple Detailed Expert
Promplt Type

Figure 3. Reliability performance across multiple tests

3.7. Visual indicators of framing

We analyzed 8,979 social movement images in
terms of their capacity to predict four types of framing
(i.e., conflict, peace, protester solidarity, and police
solidarity) using 77 binary predictors regarding actors,
objects, actions, environments, and relationships. Both



logistic regression (LR) and random forest (RF)
classifiers were trained with stratified bootstrap
resampling (N = 1,000) (see Appendix).

Conflict framing was most reliably predicted, with
both LR and RF converging on emotion intensity and
violence related indicators. LR showed that tense
protester emotions (OR =39.61 [9.77, 136.98]), visible
smoke or fire (OR = 37.39 [9.56, 135.35]), and visible
property damage (OR = 36.95 [6.02, 147.25]) were the
strongest predictors. RF similarly ranked tense protester
emotions (Imp = 0.13 [0.09, 0.16]), tense police
emotions (Imp = 0.09 [0.07, 0.13]), and visible property
damage (Imp = 0.07 [0.05, 0.09]) as among the most
important predictors. By comparison, peace framing
was captured through indicators of calmness and
memorialization. LR revealed high odds ratios for
peaceful gatherings (OR = 375.59 [254.29, 560.10]),
followed by calm protester emotions (OR = 17.86
[13.56, 24.01]) and memorial elements (OR = 13.36
[5.70, 29.01]). RF results echoed the pattern, with
peaceful gatherings (Imp = 0.27 [0.22, 0.32]) and calm
emotions (Imp = 0.21 [0.17, 0.25]) emerging as
dominant predictors.

Protester solidarity framing was characterized by
gestures of unity and determination. LR showed strong
predictive power from comforting or hugging (OR =
39.62 [18.35, 83.40]), organized crowds (OR = 15.45
[10.24, 23.53), and determined emotions (OR = 15.14
[10.24, 22.31]). RF results also highlighted organized
crowds (Imp = 0.19 [0.14, 0.24]), peaceful gatherings
(Imp = 0.17 [0.13, 0.21]), and determined emotions
(Imp = 0.13 [0.09, 0.17]). Police solidarity was
predicted by indicators of police presence and
demeanor. LR identified calm police emotions (OR =
21.93 [8.38, 61.53]), riot gear (OR = 16.82 [5.82,
41.09]), and police presence (OR = 11.25 [4.18, 40.99])
as significant predictors. Similarly, RF emphasized
police presence (Imp = 0.24 [0.18, 0.30]), determined
emotions (Imp = 0.13 [0.09, 0.18]), and regular gear
(Imp = 0.087 [0.06, 0.12]) as predictors.

4. Discussion and Conclusion

This study provides a systematic evaluation of
state-of-the-art LVLMs for visual framing analysis in
the context of social movement news imagery. In
response to RQI1, our findings confirm that
contemporary LVLMs, including Gemma3-27B, GPT-
4.1, InternVL3-14B, InternVL3-38B, and Qwen2.5-
VL-72B, exhibit substantial potential for automating
large-scale content analysis, particularly when guided
by theory-driven prompts. Across models, InternVL3-
38B and Qwen2.5-VL-72B consistently achieved high
baseline agreement with human coding, while GPT-4.1
benefited  most  dramatically  from  prompt

enhancements, suggesting that model architecture
interacts meaningfully with prompting strategies.

Addressing RQ2, we found that CoT prompting
significantly improved model alignment with human
annotations, especially for frames requiring interpretive
nuance, such as solidarity. Expert-level CoT prompts,
which guided models through multi-step reasoning,
consistently outperformed baseline and simple prompts.
These results underscore the value of prompt
engineering for enhancing the interpretability and
reliability of LVLMs, supporting prior work in language
modeling and extending it into the visual domain.

To answer RQ3, we identified persistent
challenges in frame detection accuracy. While conflict
and peace frames showed relatively high alignment
across models, solidarity frames were more difficult to
detect, possibly due to their reliance on subtle cues and
symbolic markers. Unlike conflict, which is marked by
explicit cues of confrontation, solidarity is typically
implicit, relying on subtle gestures of unity, shared
symbols, or group alignments. For example, a raised fist
may signify solidarity, but could also be read as
aggression or celebration, depending on the context.
These cues are often relational, polysemous, and
culturally specific, making them harder for LVLMs to
consistently identify than the more straightforward
visual markers of conflict or peace. The largest
differences in performance appeared in baseline
conditions, emphasizing the need for structured
guidance in complex visual interpretation tasks.

This study has limitations. First, model
performance is highly dependent on structured prompts
and may not generalize reliably to unguided inference
settings. Second, while the coding framework improves
replicability, it cannot fully capture connotative or
metaphorical dimensions of visual meaning without
further instructions.

In sum, this study offers critical insights into how
LVLMs can be deployed in mass communication
research. It contributes new evidence on model
reliability, prompt efficacy, and the differences in model
performance between visual frames, providing a
foundation for future framing research. As visual
content plays an increasingly important role in public
discourse, tools like CoT-enhanced LVLMs can help
scale visual framing analysis while preserving
theoretical rigor and human interpretability.
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